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Resumo 

A rede de distribuição de baixa tensão frequentemente não possui informação atualizada sobre a 

conectividade à fase de cada cliente. Este facto origina obviamente ineficiências na gestão do equilíbrio 

trifásico, o que por sua vez pode gerar ineficiências operacionais tais como aumento de perdas ou 

desequilíbrios de tensão desnecessários. Contudo, com a instalação de smart meters e a consequente 

disponibilização de dados de consumos de energia de clientes a intervalos de tempo pré-determinados 

é possível estimar a ligação à fase de cada cliente, assumindo que está também disponível informação 

sobre o consumo agregado por fase nas subestações, com a mesma resolução de tempo.  

Nesta tese, um conjunto de abordagens tutoriais de data analytics que permitem identificar a 

conectividade à fase subjacente dos clientes com base no seu histórico de consumos e totais 

agregados por fase nas subestações foi estudado. Com base nesse estudo, um novo método que aplica 

a regressão linear multivariada foi implementado e o seu desempenho comparado com um método 

proposto na literatura, que utiliza Análise dos Componentes Principais [1]. 

A experimentação é realizada não só em (i) condições laboratoriais, nas quais a informação agregada 

por fase nas subestações é construída de forma a replicar perdas da rede típicas, ruído aleatório, 

roubos de energia da rede e erros de assincronismo e enviesamento do relógio, mas também (ii) em 

dados reais fornecidos pelo incumbente em Portugal, EDP Distribuição – Energia, SA para uma 

localização específica. 

 

Palavras-chave: Identificação de fase, Redes Inteligentes de Baixa Tensão, Topologia de Rede, 

Regressão Linear Multivariada, Análise dos Principais Componentes
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Abstract 

Low voltage distribution grid characterization often lacks information on customer’s phase connectivity. 

This leads to obvious ineffectiveness in maintaining phase-load balance, which, in turn, may cause 

several operation inefficiencies such as increased energy losses and unnecessary voltage imbalances. 

Yet, with the deployment of smart metering and the consequent availability of energy consumption data 

of pre-defined time-resolution, phase connectivity information might be possible to estimate, if data on 

per-phase aggregate energy measurements are available at substation sites with the same time-

resolution. 

In this thesis, a set of data analytics tutorial approaches to identify the underlying customer phase-

connectivity from time series of energy consumption and their aggregated per-phase energy 

measurements were studied. Based on the study, a new method which applies Multivariate Linear 

Regression is then implemented and compared with state-of-the-art methods based on Principal 

Component Analysis. 

Comparisons were carried out with experimentation (i) in laboratorial conditions where aggregated per-

phase energy measurements data is built to replicate typical grid losses, random noise, energy theft, 

and clock skew and also synchronization errors, but also (ii) with real-world data provided for a specific 

location by Portugal’s incumbent EDP Distribuição. Results have shown that the new Multivariate Linear 

Regression method consistently presented better performance than the state-of-the-art methods, both 

in extreme laboratorial and near-real world conditions. 

 

Key-words: Phase identification, Low Voltage Smart Grids, Smart Meters, Network Topology, 

Multivariate Linear Regression, Principal Component Analysis 
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1. Introduction 

1.1. Motivation 

Phase identification is a critical input to the grander problem of phase load balancing. As electricity is 

usually generated and distributed as three-phases separated by 120º AC voltage, households mostly 

draw from a single phase, and maintaining phase load balance in substation transformers is paramount 

to achieve network efficiency and prolonging the life time of assets [2], [3]. 

As consumers become more technology and environmentally-conscious, power utility companies face 

the challenge of managing revenue recession while meeting the demands of their customers in a 

progressively more complex and dynamic distribution network [4]. 

In fact, rapid growth in Distributed Energy Resources (DERs), primarily solar, and plug in devices, such 

as electrical vehicles, due to indorsement by governments through lighter taxation, is requiring a more 

active management of the distribution network as an answer to more frequent network configuration 

changes [5]–[7]. 

Utilities are responding to these challenges by seeking increased efficiency while innovating, namely by 

investing heavily into smart grids which allow the implementation of analytics solutions to augment 

Automated Metering Infrastructure (AMI) productivity. Actually, it is forecasted that global investment in 

analytics solutions and integration services with this goal will amount to $10.1 billion through 2021 [8]. 

However, despite these investments, many important applications for network control and optimization 

such as 3-phase power flow optimization, volt-VAR control, distribution network state estimation, 

reconfiguration and restoration and load balancing, still rely on the network connectivity model and 

phase connectivity being known [9]. While the connectivity model is mostly reliable, phase connectivity 

information is often erroneous or missing. This is due to repairs, maintenance and common phase 

balancing projects that do not update phase connectivity information [2], [10]. 

Whereas distribution grid configuration and phase load balancing are key to reduce power loss and 

integrating DERs, incorrectly classifying the phase of a household or cable may lead to further 

unbalancing and possible overloads, which may lead to higher copper losses, voltage drops or 

equipment damage and consequent service interruption [2], [11], [12]. 

Historically, solving the phase identification problem relied on hardware-based methods. These 

however, require additional equipment or manpower to operate it, which can became a costly solution 

[13]. On the other hand, recent studies have taken a data analytical approach to solve the phase 

identification problem. Several machine learning algorithms have been proposed, nevertheless the 

proposed methods tend to be computationally intensive and complex to implement and thus this thesis 

seeks to present a novel and simpler method for phase identification, utilizing Multivariate Linear 

Regression (MLR), and compare its performance to the state-of-the-art method proposed in [13] which 

utilizes Principal Component Analysis (PCA).  
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1.2. Objective 

The objective of this work is to present a set of tutorial approaches to identify underlying customer 

phase-connectivity from: 

1) Their time series of energy measurements and; 

2) Their aggregated per-phase energy measurements. 

This smart meter data is gathered at a pre-defined time-resolution, set by the power utility companies, 

usually between 15 min and 1 hour. 

In this paper a method is proposed which applies Multivariate Linear Regression to infer phase 

connectivity and its performance compared with literature provided Principal Component Analysis [1]. 

In order to achieve a simpler implementation, both methods are developed without need for relaxations 

or pre-processing. Though the application of such techniques may improve the performance of both 

algorithms, accurate and significant results are still obtained while keeping the implementation simple, 

intuitive and easily replicable in power utility companies. 

Method evaluation will be established by measuring model accuracy under different data sources and 

errors. Data sources include both laboratorial conditions where aggregated per-phase energy 

measurements data is built from daily consumer profile samples and real-world data provided by 

Portugal’s incumbent EDP Distribuição – Energia, SA, for a specific location. Different errors will be 

added to increase test robustness, namely typical grid losses, smart meter accuracy, energy theft, and 

clock skew and synchronization errors. 
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1.3. Document Structure 

Firstly, the current section concludes Chapter 1 which is an introduction into the topic discussed in this 

thesis.  

Secondly, Chapter 2 introduces the background and historical solutions to tackle the phase identification 

problem as well as exhibit state-of-the-art methodologies proposed to solve this problem. 

Chapter 3 delves into the mathematical problems considered and implemented in this work, beginning 

by detailing each of the models and then presenting a qualitative comparison of the proposed 

methodologies, identifying theoretical pros and cons of each one. 

Afterwards, in Chapter 4, the implementation methodology is discussed, starting by explaining input 

data utilized in the subsequent experimentations, then describing how different noises and losses were 

modulated on top of this input data, and finally characterizing the testing framework utilized for gauging 

the effectiveness of the different algorithms and describing the calculation method for key measures. 

In Chapter 5, the performance of the implemented methodologies under different scenarios is presented 

and analyzed, according to the designed testing framework. 

Finally, Chapter 6 concludes this work with key observations and suggestions for future work related to 

this paper. 
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2. Background and State-of-the-Art 

2.1. Background 

Historically, a number of different approaches have been used to solve the phase identification problem. 

These approaches may be classified between hardware-based or software-based. 

Introducing the hardware-based methodologies, the simplest solution is to deploy smart meters with 

Power Line Communication capabilities which can be used to directly communicate with secondary 

substations comparing both PLC and substation measurements to correctly identify the measured 

phased. This solution, however, is not always viable either because many smart grid networks have 

already been deployed without such capabilities or because the incremental cost of such equipment 

may increase total investment to be too high for investors [14]. 

Previous to smart grids, Phase Identification Systems (PIS), for instance the one introduced in [15], 

relied on Global Positioning System (GPS) to compare phase measurements between a known 

reference phase location and mobile units used in unknown field locations. Despite having been in 

service since 2004, the costs and manpower required by these solutions presents a significant 

downside. Furthermore, many of such methods necessitate customer availability to provide access to 

specific meters inside households [14]. 

Other methods, such as the one presented by Chen et al. [16] which refers a method that incorporates 

a microprocessor and usage of GPS to infer phase connectivity and the one discussed in [17] which 

applies signal injection devices suffer from the same drawbacks. 

With the advent of smart grids using AMI and Phasor Measurement Units (PMU), software-based 

methods, often referred to as big data analytics or machine learning, have become increasingly popular 

and are now considered state-of-the-art techniques to infer phase connectivity. Located at households 

in a smart grid, or at important nodal points, these devices measure different data at regular time-

intervals and synchronized with each other [9]. 

As the number of smart meter installations is forecasted to surpass 1.1 billion worldwide by 2022, large 

volumes of diverse data will feed data analytical approaches to phase identification, improving its 

performance and accuracy. Data most commonly available includes electricity consumption, measured 

every 15 minutes to 1 hour, voltage magnitude, geographical information, asset health monitoring or, 

with micro-PMUs, time-synchronized measurements with phase angles [9].  
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2.2. State-of-the-Art 

State-of-the-Art methodologies to infer phase connectivity and network topology through data analytics 

differ not only on the type of input data exploited, time-series of voltage magnitude or time-series of 

energy measurements, but also on the algorithms and machine learning techniques proposed to solve 

the problem. 

In the literature, the majority of researchers have proposed considering the time-series of voltage 

magnitude correlation between customers and feeders on the same phase. The intuition is that the 

impedance and loads on the distribution network are inherently unbalanced and therefore results in 

unbalanced line currents and voltages. The implication is that customers with the same phase will 

present trajectories of voltage time-series with similar behavior to each other [7]. 

In machine learning, techniques may be categorized as supervised, semi-supervised and unsupervised. 

Supervised techniques require an accurate subset of customer to phase connectivity data with which to 

train the algorithms to properly identify the correct phase for the unknown customers. Semi-supervised 

learning also requires some labeling data to train the algorithm, however the training to testing dataset 

ratio is much smaller. On the other hand, unsupervised learning techniques do not rely on training the 

algorithm with correct data. 

In [18], the performance of different classification machine learning methods, support-vector machines 

(SVM), label propagation and clustering by k-means, one from each technique respectively, is 

compared, by training the algorithms on an existing and partially correct phase connectivity model, with 

voltage magnitude measurements. While SVM presents the highest accuracy, it requires accurate 

phase connectivity for a subset of customers, which may not always be available. Oppositely, the k-

means clustering unsupervised technique requires no prior knowledge of phase connectivity and may 

be more robust to noisy labels. 

In fact, diverse clustering techniques have been proposed. In [7], a two-step clustering algorithm is 

proposed. First, a linear dimensionality reduction technique, PCA, is used to extract key feature vectors 

from the raw time-series of voltage measurements. Afterwards, the k-means clustering algorithm is 

applied to identify customers belonging to the same phase. In contrast, [10] uses a nonlinear 

dimensionality reduction technique, t-SNE, to feed the unsupervised clustering algorithm density-based 

spatial clustering applications with noise (DBSCAN). A comparison of both algorithms is presented in 

[19], where GIS data is also leveraged to improve results. Despite presenting accurate results and not 

relying on correct labels for training, clustering methodologies suffer from needing a small scale field 

validation to attribute a single phase to each cluster. 

Other methodologies also consider different approaches to deduce network topology from voltage 

correlation. In [6], the topology of a distribution network is constructed via an information theory based 

algorithm, Chow Liu algorithm, from voltage measurements. In [14], the maximum spanning tree graph 

theory is used, by applying the Prim algorithm to find the maximum spanning tree of the complete graph. 

A hybrid solution between the Prim and Chow Liu algorithms is developed in [20]. Non-synchronous 

voltage data is considered in [21] to find the related maximum likelihood by estimating the inverse 
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covariance matrix while incorporating prior information on line statuses via a maximum a-posteriori 

approach. In [22], harmonic voltage correlation is proposed to determine the phase connectivity of 

customers, based on a correlation analysis with the Fischer Z transform. 

In [23], a two-step algorithm is developed by estimating the concentration matrix using a garrote-type 

estimator, and then deriving that same matrix to infer the most probable electrical network. This method 

however only works reliably without noise and with a reasonably small phase error. 

Subsequently are described two methods have been proposed that use both voltage and energy 

measurements. In [24], linear regression based algorithms are applied to find basic voltage drop 

relationships, and in [25] network topology identification is achieved through estimation of the network 

voltage sensitivity matrix and posterior application of graph theory (Prüfer Sequence). Information on 

both voltage and energy time-series is however not always available. 

Finally, methodologies using time-series of energy measurements in kilowatt-hour are presented. These 

approaches are based upon the principle of energy conservation which implies that total energy supplied 

by a feeder in each phase must be equal to the energy consumed by all the households connected to 

that phase plus errors. One disadvantage of using this principle is that results are more sensitive to 

unmetered loads when compared to voltage-based algorithms. 

In [3], mathematical optimization is used by proposing different relaxations to Mixed Integer 

Programming (MIP) formulations. Conversely, this implementation is reported to be computationally 

intensive. In [1], the authors propose applying PCA and its graph-theoretic interpretation to infer phase 

connectivity from the time-series of energy measurements, comparing its performance to [3]. 

In this thesis, work is focused on the time-series of energy measurements since not only are solutions 

utilizing this data scarcer, but also because it was the data made available to the development of this 

project. The technique proposed in this effort which is based upon Multivariate Linear Regression is 

compared with Principal Component Analysis presented in [1], since it is reported to be the most recent 

and best performant solution to the phase identification problem while using energy measurements data.
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3. Predictive Models in this Study 

3.1. Multivariate Linear Regression (MLR) 

In statistics, linear regression is used when considering the linear relationship between one or more 

scalar dependent (or response) variables 𝑦 and one or more independent (or explanatory) variables 𝑥 

[26]. 

Its application is often categorized in two comprehensive groups: 

1. Prediction or forecasting: utilizing the linear regression to fit a model through a dataset and then 

predict the dependent variable for a new input set of 𝑥’s; 

2. Quantifying relationship between variables: identify which subsets of 𝑥’s contribute to explaining 

𝑦, and how strongly. 

Different linear regression applications are distinguished based on the number of dependent and 

independent variables, which determines the model name: 

1. Simple Linear Regression: One 𝑦 and one 𝑥, a single independent variable is used to predict 

the behavior of the dependent variable; 

2. Multiple Linear Regression: One 𝑦 and multiple 𝑥’s, using more than one explanatory variable 

to explain the response variable; 

3. Multivariate Linear Regression (also referred to as Multivariate Multiple Linear Regression): 

Multiple 𝑦’s and multiple 𝑥’s, relationship between different explanatory variables and possibly 

correlated independent variables to measure the influence of each of the dependent variables 

on each response variable. 

The basic model for a Linear Regression is given by: 

 𝑦𝑖 = 𝛽01 + 𝛽1𝑥1 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜀𝑖 = 𝑥𝑖
𝑇𝛽 + 𝜀𝑖 (1) 

Where 𝛽𝑖 represents the parameter vector and 𝛽0 is the constant offset term, εi corresponds to the error 

or noise and xi
Tβ is the inner product of vectors 𝑥𝑖 and β. 

Specifically, MLR is the implementation that best fits the problem discussed in this thesis. For every set 

of 𝑥’s there is a corresponding set of 𝑦’s measured, related by different parameters, which can be 

expressed in matrix form by: 

 𝑌 = 𝑋𝛣 + 𝛦 (2) 

Where the 𝑛 dependent values measured for the 𝑝 independent variables are given by: 
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 𝑌 = (

𝑦11 ⋯ 𝑦1𝑝

⋮ ⋱ ⋮
𝑦𝑛1 ⋯ 𝑦𝑛𝑝

) =
𝑦1

′

⋮
𝑦𝑛

′
 (3) 

And the dependent variables are stacks in the 𝑋 matrix as follows: 

 𝑋 = (
 1   
 1   
 1   

𝑥11 ⋯ 𝑥1𝑞

⋮ ⋱ ⋮
𝑥𝑛1 ⋯ 𝑥𝑛𝑞

) (4) 

Summarizing the model dimensions, 𝑌 is ( 𝑛 × 𝑝 ), 𝑋 is ( 𝑛 × ( 𝑞 + 1 )) and Β is ( 𝑞 + 1 ) × 𝑝. 

The employment of MLR is based on some assumptions that lead to good estimates: 

1. 𝐸(𝜖𝑖) = 0, the expected value for the error is zero; 

2. 𝑐𝑜𝑣(𝑦𝑖) =  Σ, each row of 𝑌 has the same covariance matrix; 

3. 𝑐𝑜𝑣(𝑦𝑖 , 𝑦𝑗) = 0, rows of 𝑌 are uncorrelated with each other 

However, these assumptions will be challenged in the implementation of the model to solve the phase 

connectivity problem when noise is added. 

In order to find Β, Ordinary Least Squares (OLS) approach is one of the more common approaches for 

fitting the linear regression model. Considered one of the simplest methods and computationally 

straightforward, OLS minimizes the sum of the squared residuals, and the formula is given by: 

 𝛣 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (5) 
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3.2. Principal Component Analysis (PCA) 

In order to establish a basis for performance comparison, a basic implementation of PCA was also 

developed, following the work of Satya et al. [1]. 

PCA is widely spread as a tool for multivariate analysis. It is a statistical procedure that aims to obtain 

linearly uncorrelated variables, nominated principal components, from a dataset of observations of 

possibly correlated data by means of an orthogonal transformation. PCA is applied by eigenvalue 

decomposition of a covariance matrix or Singular Value Decomposition (SVD) of a data matrix. It is 

considered to be the simplest of multivariate analysis based on eigenvectors. 

The objective of network model identification with PCA is to obtain the true data subspace and 

constrained subspaces from a data matrix Z, where Z is a ( 𝑛 × 𝑚 ) matrix with 𝑛 number of nodes or 

meters, including aggregated measures, and 𝑚 number of measurements or samples per node. 

The 𝑛 variables are linearly related, with 𝑝 linear relationships, given by: 

 𝐶𝑍 = 0 (6) 

Where 𝐶 is the ( 𝑝 × 𝑛 ) constraint matrix. 

These subspaces are obtained from the eigenvectors of the covariance matrix 𝑆𝑍 = 𝑍𝑍𝑇, which can be 

attained by using the SVD of Z, such that: 

 𝑆𝑉𝐷(𝑍) = 𝑈1𝑆1𝑉1
𝑇 + 𝑈2𝑆2𝑉2

𝑇 (7) 

Where 𝑈1 and 𝑈2 are the set of orthogonal eigenvectors corresponding to the (𝑛 − 𝑝) largest and 𝑝 

smallest eigenvectors of 𝑆𝑧 respectively, with 𝑝 dependent variables and (𝑛 − 𝑝) independent variables, 

and 𝑆1 and 𝑆2 are diagonal matrixes with the singular values of Z. 

In [27], it has been shown that the subspace 𝑆𝑅 covered by the rows of 𝑈2
𝑇 and 𝐶 are equivalent: 

 𝑆𝑅(𝑈2
𝑇)~𝑆𝑅(𝐶) (8) 

Therefore, by replacing 𝐶 in Eq. (7) the following relationship is obtained: 

 𝑈2
𝑇𝑍 = 0 (9) 

However, given that the constraint matrix suffers from rotational ambiguity, the estimated constrained 

matrix �̂� is not unique and may not be the correct solution that represents the physical interpretation of 

the problem: 

 𝑈2
𝑇𝑍 = �̂�𝑍 = 𝑄�̂�𝑍 = 0 (10) 

Where 𝑄 is a non-singular matrix. 
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To achieve a unique solution, a regression model can be obtained by subdividing variables into 

dependent and independent variables: 

 𝑍 = [
𝑍𝑑

𝑍𝑖
] (11) 

Where 𝑍𝑑 represents the first rows of the Z matrix with the 𝑝 dependent variables and 𝑍𝑖 the ( 𝑛 − 𝑝 ) 

last rows with the independent variables. 

Also, the constraint matrix �̂� can be partitioned as well into a ( 𝑛𝑑 × 𝑛𝑑 )–dimension  �̂�𝑑 matrix and a 

( 𝑛𝑑 × 𝑛𝑖  )–dimension  �̂�𝑖 matrix: 

 �̂� =  [
�̂�𝑑

�̂�𝑖

] (12) 

Consequently, from Eq. (10) it is possible to obtain: 

 �̂�𝑑𝑍𝑑 + �̂�𝑖𝑍𝑖 = 0 (13) 

Finally, since 𝑈2𝑑 is of full rank, Eq. (13) can be expressed in terms of the regression matrix relating the 

dependent and independent variables so that: 

 𝑍𝑑 = −(�̂�𝑑)−1�̂�𝑖𝑍𝑖 = �̂�𝑍𝑖 (14) 

Where �̂� is the ( 𝑛𝑑 × 𝑛𝑖 )–dimensional regression matrix, proven to be unique in [27]. 

In conclusion, the regression matrix using PCA is given by: 

 �̂� = −(�̂�𝑑)−1�̂�𝑖 (15) 
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3.3. Time complexity of the algorithms 

Although accuracy of the algorithms to correctly identify customer-to-phase connectivity is the principal 

performance measure employed in this work, it is relevant to refer to the time complexity of the 

algorithms. 

In computer science, time complexity, usually presented with the O-notation, is a formal measure to 

estimate the time it takes for the algorithm to run. 

Considering 𝑛 as the number of nodes and 𝑚 as the number of measurements per node, when applying 

the MLR algorithm it takes: 

 𝑂(𝑛2𝑚) to multiply 𝑋𝑇𝑋 

 𝑂(𝑛𝑚) to multiply 𝑋𝑇𝑌 

 𝑂(𝑛3) to compute the Cholesky factorization of 𝑋𝑇𝑋 and use that to compute (𝑋𝑇𝑋)−1𝑋𝑇𝑌 

Since in most of the simulations 𝑚 > 𝑛, 𝑂(𝑛2𝑚) asymptotically dominates over other computations and 

therefore it is considered the time complexity for applying OLS with MLR. 

Complementary, in [1], the time complexity of the PCA algorithm is demonstrated to be 𝑂(𝑛𝑚2), due to 

the Singular Value Decomposition (SVD) of Z which is the most expensive step. 

Thus, taking into consideration that usually the number of measurements 𝑚 is greater than the number 

of customers 𝑛, although very similar in complexity, the MLR algorithm is proven to be better performant 

in an ideal implementation. However, preliminary results presented in chapter 4.5 do not follow the 

expected result since our implementation of the MLR algorithm doesn’t apply the Cholesky factorization 

by virtue of simplicity. 
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4. Methodology 

4.1. Overview 

In order to accomplish the scope of this thesis, the algorithms in analysis were implemented in R Studio 

[28] programming language, in a computer with Windows 10 – 64bit , CPU @ 2.30GHz and 12,0GB 

RAM. 

Firstly, the program starts by importing consumer daily profiles’ input data from a text file into the 

application environment. Necessary data cleansing is performed and a data table with daily consumer 

profiles is built. 

Secondly, a phase is randomly attributed to each client, following a uniform distribution, and aggregated 

phase totals are calculated, simulating secondary substation readings. 

Afterwards, different types of errors or noise are introduced to the aggregated phase totals, and true 

customer phase is hidden. 

Subsequently, true customer smart meter readings and erroneous data simulating secondary substation 

phase totals are then fed to both MLR and PCA algorithms which compute the customers’ attributed 

phase. 

Finally, algorithm accuracy is then calculated based on whether the algorithm correctly predicts 

customer-to-phase allocation. 

A simple flow describing the program implementation is represented in the Figure 1 below: 

 

Figure 1 - Phase identification program workflow 
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4.2. Input Data 

For the development of this thesis, centered on the time-series of energy measurements from both 

consumer smart meters and secondary substation readings, a sample of daily consumer load profiles 

has been provided by EDP Distribuição, SA. for an undisclosed location. 

Ideally, in real world situations, input data will be supplied including secondary substation readings with 

phase totals aggregated per phase. However, since this work is developed under laboratorial conditions 

and because known information does not include secondary substation readings, these need to be 

simulated following the methodology introduced in the previous section and detailed subsequently. 

Input data consisted of 1623 daily consumer load profiles, each with a total of 96 readings, measured 

every 15 minutes. The time series of power measurements is in kW. Some data cleansing was 

necessary as some profiles had missing readings for some hours. Where information was unavailable, 

it was considered zero. However, daily profiles which had no data or it was always null were removed 

as they were irrelevant for the problem at hand. 

In order to create consumer profiles which spawn more than one day, daily load profiles were grouped 

together, depending on the number of customers and necessary number of days to achieve the target 

number of measurements per number of clients’ ratio. Figure 2 represents the load diagrams for a 

sample of 2 customers, spawning over 3 consecutive days. 

 

Figure 2 - Sample consumer profiles for 2 clients and 3 days 

In the above figure, it is possible to observe in Client 2’s second day of readings, between 12:00 and 

18:00, an example of the missing data which may arise due to mechanical faults, human error, fraudulent 

behavior, instrument error or changes in system behavior [29]. 
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The next step is to randomly allocate a phase to each customer, following a uniform distribution. Figure 

3 illustrates the total number of customers per phase, considering a test run with 100 clients. 

 

Figure 3 - Number of clients per phase 

It is possible to observe that, despite the fact that a uniform distribution was used, there is, in this 

example, a noteworthy unbalance in the number of clients per phase. In fact, simulations were run to 

investigate the impact of phase unbalance in the proposed algorithms with no registered influence. 

Subsequently, load profiles were aggregated according to their new allocated phase. Figure 4 simulates 

the readings from a secondary substation, following an aggregation considering Figure 3’s allocation. 
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Figure 4 - Total load per phase, considering 100 clients 

This representation, where the readings on the secondary substation are exactly equal to the sum of 

the readings on the smart meters, would only be accurate if there were no errors and no noise. However, 

such errors are unavoidable in real situations and thus the following section explores different types of 

errors to be considered in the analysis. 
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4.3. Noise modeling 

In this chapter, different types of errors will be introduced. A brief explanation of each type of noise will 

be presented and a typical value introduced. In this work, five kinds of noise were considered: 

 Meter accuracy class: meters are regulated to have at least 99.5% accuracy 

 Clock asynchronism: instead of clocking the load at the same time, different meters may have 

a slight walk 

 Clock skew: may result when a clock’s frequency differs from the true clock 

 Copper losses: due to resistive capacitance which results in heating, etc. 

 Missing Clients: due to theft, missing data, etc. 

For each of the errors stated above, detail will be presented as to how they are calculated and algorithm 

accuracy will be computed isolating each type of noise. The results section will then conclude by 

aggregating all types of noise simultaneously. Results will be show for a typical error and for a more 

critical one in order to facilitate the comparison between both algorithms’ accuracy. 

4.3.1. Meter accuracy class 

Electricity smart meters inherently have an accuracy class, result of its design, build quality and other 

factors. Understandably, a higher quality measuring meter will provide better accuracy but have 

significantly increasing costs for the utilities company. Thus, standards are defined to stipulate the 

minimum accuracy ratings required for smart meters [30]. 

ANSI C12.20 states that for smart/electronic meters must have at the very least 0.5 accuracy class, 

while IEC/AS Standard 62053 describes the requirements for 0.5, 1 and 2 accuracy classes. In this 

work, 0.5 accuracy class meters were considered as a reference for the typical error which means 

readings must be in the range of ± 0.5% of the true value. 

This error may be approximately modelled by multiplying every reading with a random value following a 

Gaussian distribution with mean 1 and standard deviation 1/3 of meter accuracy, such that 99.7% of 

simulated errors fall within the defined 0.5 accuracy class, as represented in Figure 5. 
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Figure 5 - Normal distribution of meter accuracy error for 0.5 accuracy class 

The Figure 6 below shows a sample of 2 clients and 3 days readings including meter accuracy errors 

randomly selected from the above distribution when a typical meter accuracy error of 0.5% is applied. 

 

Figure 6 - Sample consumer profiles with meter accuracy error 

It is hardly observable any variations on the error value (red line).  
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4.3.2. Clock asynchronism 

Next, two types of clock errors were introduced, commonly modelled together but, in this exercise, 

simulated independently. 

Firstly, clock asynchronism is a result of clocking the load at different points in time and thus the 

measurement of total load for a given time is not exactly the sum of smart meter readings for that time 

interval. Unlike the meter accuracy error, clock asynchronism does not change with time. 

In an effort to increase efficiency in existing smart grid infrastructure, utilities are progressively more 

dependent on high quality data that must be synchronized with very high accuracy for control and 

protection as well as data analytics solutions. Multiple applications such as measurement systems, fault 

locators or protection relays require microsecond precision from substation readings. Synchronous 

sampling is critical as it can introduce errors in solutions but for customer end-points requirements are 

not so strict and thus small synchronization errors can influence phase identification models [31]. 

Following V. Arya et al. [3] implementation, to simulate clock asynchronism, each meter is made 

erroneous by adding a random Gaussian walk. Instead of clocking the load after every Δt units, the k𝑡ℎ 

measurement clocks the load for the time interval [𝑇𝐾−1, 𝑇𝐾] where T𝐾 = 𝑇𝐾−1 + 𝛮(𝜇 = Δt, σ =

fΔt), f ϵ [0, 2.23]%. In summary, in this simulation, all clocks considered must have a maximum (3𝜎) of 

±1 min asynchronism which, taking into account readings are measured every 15 minutes, corresponds 

to 6.67%. This will be considered the typical asynchronism error. 

Figure 7 shows the normal distribution of clock asynchronism errors considering the conditions stated 

above. The ensuing Figure 8 displays a sample of 2 clients and 3 days readings including randomly 

selected asynchronism errors from such a distribution. 



22 
 

 

Figure 7 - Normal distribution of clock asynchronism error 

 

Figure 8 - Sample consumer profiles with clock asynchronism errors 

In the figure above, it is possible to observe slight errors, mostly when there are big differences in 

consecutive readings for true data. This representation is, however, a very high error considering smart 

meters are usually synchronized from within 1 second of an acceptable time reference [31]. 
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4.3.3. Clock skew 

Introducing the second type of clock error, clock skew occurs when each smart meter’s internal clock 

runs at a different frequency from that of the true clock which, in this smart grid application may be 

considered as the substation clock. 

Usually, a single clock signal is used to synchronize all clock frequencies. However, one disadvantage 

associated with this technique is that each microprocessor in smart meters may receive the signal at 

different points in the chip. Moreover, several factors may contribute for causing clock skew such as 

electromagnetic propagation delays, buffer delays in the distribution network, variations in the 

manufacturing process, power supply variations and different load capacitance [32]. 

In this simulation, in order to compute the frequency of each meter’s clock in comparison to the 

substation clock, a random shift in frequency is introduced following a Gaussian distribution so that it 

lies in the interval [−fΔt, fΔt], f ϵ [0, 30]%. 

Although a maximum shift in frequency of 30% is considered as the base case, this is a very high skew 

error since the skew error for a real clock usually lies in the order of milliseconds [3]. 

Figure 9 below shows the normal distribution from which clock skew errors were randomly selected. 

 

Figure 9 - Normal distribution of clock skew error 
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Figure 10 - Sample consumer profiles with clock skew error 

From analysing Figure 10 above it is possible to observe that comparatively with the errors displayed 

before, clock skew error is, in this example, much more visible. However, because the error percentage 

is constant over time for a single smart meter clock it won’t have a significant impact in results as will be 

discussed in the following chapter. 

4.3.4. Copper losses 

Low voltage distribution networks enable the transmission of electric energy from secondary substations 

to customers in independent households through large and complex networks. These networks consist 

of not only overhead lines or buried cables but also other equipment such as transformers. As previously 

stated, the hard fact is that there are always losses in the network and thus the generated electric energy 

does not match with the total energy supplied to consumers. Losses may be classified as technical or 

commercial losses [33].  

In this segment technical copper losses are introduced which can be due to energy dissipated in the 

conductors and equipment used for transmission, transformation or distribution. In the European Union, 

is it estimated that around 4% of total generated energy is wasted due to distribution losses [34]. 

Copper losses, due to resistance along the wirelines or internal wiring within the transformers, scale 

with current squared time resistance (I2R) and the majority of distribution line losses occur within the 

primary and secondary distribution lines. 

In this simulation, the base case is considered to have copper losses in the [2%, 10%] interval, varying 

quadratically with load. A sample of 2 customers and 3 days data which is displayed in Figure 11. 
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Figure 11 - Sample consumer profiles with copper losses 

It is possible to observe that since copper losses vary quadratically with load, errors are more visible 

when load increases. It should be noted that while all previous errors could be either positive or negative, 

copper losses are evidently always negative. Figure 12 below shows the totals per phase when 

considering copper losses for 100 clients. 

 

Figure 12 - Total load per phase, including copper losses 
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4.3.5. Missing clients 

Another type of network losses may be due to commercial losses. In low voltage distribution networks, 

customers have to pay their electricity bills according to their unit consumption and their particular needs, 

depending upon the contracted tariff. Specifically in smart grids, the devices used to measure power 

consumption for billing purposes and network control are smart meters. 

Although smart meters are harder to tamper with than electromechanical KWh meters, billions of dollars 

are lost every year to electricity theft. There are multiple ways of sabotaging energy measurement such 

as unauthorised extensions of loads, tampering the meter readings by mechanical jerks, placement of 

powerful magnets or disturbing the disc rotation with foreign matters, stopping the meters by remote 

control, changing of terminal wiring, changing current transformer ratio or even some involuntary actions 

such as improper testing and calibration of meters [35]. 

While in developed countries secure networks experience only around 1-3% electricity theft, developing 

countries have been shown to have much higher theft percentages [36]. 

In our simulation, a sample of 5 random customer load profiles were added to the substation totals in 

order to simulate energy theft. Considering an example of 100 clients, this corresponds to 5%. 

Figure 13 shows the phase totals for 100 customers, including 5 missing clients. 

 

Figure 13 - Totals per phase including 5 missing clients 

It is possible to see from this example that electricity theft mostly impacts phase C and phase B. 

Predictively, introducing missing clients’ error, will have a great impact on phase identification algorithms 

because it introduces a variation in substation totals that is in no way dependent on given customer 

readings. 
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4.4. Model implementation 

Following chapter 3, this chapter explains how the MLR and PCA algorithms are applied to the problem 

of phase identification and implemented in RStudio. 

Firstly, the model for MLR is presented. The output is matrix X, 3 by 𝑛 customers which gives the 

probability of each client being connected to each of the 3 phases. 

 𝑋 = 𝑔𝑖𝑛𝑣(𝑡(𝑃) × 𝑃, 𝑡𝑜𝑙 = 0) × 𝑡(𝑃)) × 𝐵 (16) 

Where P represents the table with 𝑚 readings by 𝑛 customers, corresponding to smart meter readings 

in each customers’ household and B is composed of 𝑚 readings by 3 phases, corresponding to load 

totals in each phase per measurement. 

In this simulation, the pseudo-inverse with zero tolerance was utilized to compute the matrix inverse, 

allowing for collinearity and also to allow to run simulations with less readings than number of clients. 

Also, 𝑡( ) symbolizes the transpose of a given matrix. 

Now, the model for PCA is detailed: 

 𝑋 = 𝑡(−𝑔𝑖𝑛𝑣(𝐶𝑑, 𝑡𝑜𝑙 = 0) × 𝐶𝑖) (17) 

Where, 𝐶𝑑 corresponds to the first 3 columns of the 𝑈2 matrix and 𝐶𝑖 to all other columns, considering 

that  𝑈2 is the table corresponding to the last 3 columns of the matrix S given by: 

 𝑆 = 𝑠𝑣𝑑(𝑍 × 𝑡(𝑍)) (18) 

Where Z corresponds to a table with 𝑛 customers plus 3 by  𝑚 readings and 𝑠𝑣𝑑 computes the singular 

value decomposition. It should be noted that in order to compute the inverse, in this model the pseudo-

inverse was also applied. 

4.5. Performance measures 

Usually, when comparing algorithms, two ways to evaluate performance are frequently utilized. The first 

one and theoretically most important is algorithm accuracy. Secondly, processing speed may also have 

a relevant importance when working with big data such that a slow execution may even compromise 

real word application of such algorithms. 

Algorithm accuracy in the context of this work basically answers the question of how good each 

algorithm is at correctly inferring customer phase connectivity and is calculated by computing the 

subsequent formula. 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑔𝑢𝑒𝑠𝑠𝑒𝑑 𝑝ℎ𝑎𝑠𝑒𝑠

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐶𝑙𝑖𝑒𝑛𝑡𝑠
 (19) 
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Moreover, in order to present more consistent results, Monte-Carlo simulations were conducted with 

varying numbers of runs in the [20,50] interval. Considering several simulations, the algorithm accuracy 

is finally considered to be the average of all runs, given by: 

 𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝛴 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑝𝑒𝑟 𝑟𝑢𝑛

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑢𝑛𝑠
 (20) 

In the next chapter where results will be presented and analyzed, when the term “accuracy” is referred 

to in point of fact it means the average accuracy for the simulated Monte-Carlo runs. 

Regarding the algorithms’ time complexity and processing speed, as previously explained in chapter 

3.3, because our problem employs few data points its relevance is negligible. Nonetheless, a time 

performance simulation is presented in Figure 14, given the following input data: 

 Number of clients: 150 

 Number of readings: [0, 1500] 

 Number of runs per data point: 10 

 Errors: all 5 errors were added with typical values 

 Time is measured in seconds, as the average of all runs 

 

Figure 14 - Time performance with increasing number of readings 

Surprisingly, despite the theoretical time complexity given in chapter 3.3, PCA appears to process faster. 

Taking as an example the last data point, for 150 clients and 1500 readings, PCA averages 0.05 seconds 

while MLR takes approximately 0.07 seconds.  
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Appreciatively, both algorithms run in the order of tens of milliseconds which indicates they are viable 

for real world applications. 

4.6. Simulation framework 

In order to assist in the navigation of the test results displayed in the next chapter, a simulation 

framework was developed. It rests mainly on two types of graphics: 

I. Model accuracy – This graphic summarizes the evolution of each algorithms’ accuracy in 

guessing the correct customer phase for a set of test runs. 

a. Grid rows – Each row in the chart grid corresponds to one algorithm: MLR and PCA 

b. Grid columns – Each column plots the results for a given number of clients: 50 or 100 

c. Horizontal axis – Number of readings per number of clients ratio: the algorithms were 

fed with unitary increments of number of readings from 1 reading to up 5 times the 

number of clients 

d. Vertical axis – Algorithm accuracy % 

An example for visual reference is presented below. 

 

Figure 15 - Example of model accuracy template 

II. Model error sensitivity – this graphic represents each model’s sensitivity to variations in noise, 

by showing its accuracy with increasing error values. The purpose of this analysis is to find the 

error value that generates an average of 95% accuracy, henceforth referred to as critical error, 

which will then be applied to the model accuracy chart. 

a. Grid rows – Each row in the chart grid corresponds to one algorithm: MLR and PCA 
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b. Grid columns – Each column plots the results for a given number of readings per 

number of clients ratio: 1, 2 or 3 

c. Horizontal axis – Increasing error value, dependent on each type of error: axis starts 

with no error 

d. Vertical axis – Algorithm accuracy % 

e. Other constants: for this analysis, data for 100 clients was considered 

Another example for visual guidance is provided next: 

 

Figure 16 - Example of model sensitivity template 

The ensuing Figure 17 presents the simulation framework followed throughout this work, starting from 

the top, moving clockwise. In can be read as follows: 

 Step 1 – Noiseless - The algorithm accuracy is presented for both MLR and PCA 

 Steps 2 to 6 – Single error added: firstly the algorithms’ accuracy with a typical error is 

presented, afterwards the model error sensitivity analysis is run and critical error identified. 

Finally, the impact of running the model accuracy analysis using the critical error is shown 

 Step 7 – Cumulative errors: in step 7 the model accuracy results for running all the errors 

simultaneously are shown, for both typical and critical errors 
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Figure 17 - Simulation framework 
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5. Results 

In this chapter, the results are presented and analyzed according to the simulation framework defined 

in the previous chapter. 

5.1. Noiseless 

The first simulation compares the perfomance of both MLR and PCA at infering phase connectivity in 

an ideal situation where there is no noise added to the problem and thus the totals per phase and per 

point in time match exactly with the sum of all smart meter readings for that time period. 

The following input variables were applied for this case: 

 Number of Clients: 50 and 100 

 Number of Readings: [0, 500] 

 Number of runs per datapoint: 20 

Results are displayed in Figure 18 below. 

 

Figure 18 - Model accuracy - Noiseless 

Evidently, both algorithms achieve 100% accuracy as soon as the number of readings per number of 

clients’ ratio is unitary. On the other hand, we observe significant differences between 0 and 1 ratio 

where MLR’s accuracy increases linearly with increasing number of readings while PCA is still random. 

Note that 33.33% accuracy corresponds to the probability of correctly guessing the phase at random 



34 
 

since there are 3 phases. In real use cases, this difference may not be impactful since achieving a ratio 

of 1 corresponds to approximately 1 to 2 days of smart meter data if readings are taken every 15 min. 

Table 1 presents the necessary minimum number of days collecting data to achieve 100% accuracy for 

the noiseless case, depending on the number of clients and frequency of readings. 

Number of Clients 
Minimum number of days 

(15 min Readings) 

Minimum number of days 

(30 min Readings) 

96 1 2 

192 2 4 

288 3 6 

384 4 8 

 

Table 1 - Minimum number of days data to infer phase connectivity without noise 

5.2. Meter accuracy class 

5.2.1. Typical meter accuracy class 

Next, the typical meter accuracy error is included as described in the 4.3. Noise Modelling chapter and 

results are displayed in Figure 19. 

The following input variables were applied for this simulation: 

 Number of Clients: 50 and 100 

 Number of Readings: [0, 200] 

 Number of runs per data point: 20 

 Meter accuracy class: 99.5% 

Although 0.5% meter accuracy error is rather small, as presented previously in Figure 6, it has a slight 

impact in total model accuracy. In order to achieve approximately 100% meter accuracy, instead of 

having a number of readings per number of client’s ratio of 1, we now need around 1.7 ratio. 

Still, both algorithms show roughly the same progression as in the noiseless case. 
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Figure 19 – Model accuracy with 0.5% meter accuracy error 

5.2.2. Critical meter accuracy error 

In order to determine the algorithms’ sensitivity to increasing meter accuracy error, results are now 

presented in the model sensitivity chart displayed in Figure 20. 

The plot was computed with the subsequent input data: 

 Number of Clients: 100 

 Number of Readings: 100, 300 and 500 

 Number of runs per data point: 50 

 Meter accuracy class: [90%;100%] 

It is possible to observe that MLR’s accuracy significantly improves when increasing the number of 

readings from 100 to 300 while PCA seems to show approximately the same linear downwards trend 

regardless. In fact, given 3 times the number of readings versus clients, MLR never drops below 96% 

accuracy whereas PCA’s accuracy progressively declines until reaching 70% for a 90% meter accuracy 

class. 



36 
 

 

Figure 20 - Model sensitivity to meter accuracy 

Given these results, 97.5% meter accuracy was considered to be the critical accuracy error where both 

algorithms show approximately 90% accuracy when the number of readings equals the number of 

clients. 

The ensuing figure plots each algorithms’ accuracy for the critical error with the following variables: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Meter accuracy class: 97.5% 

We can see from Figure 21 that MLR shows considerable better accuracy than PCA when the critical 

error is applied. When the number of readings is twice or more than the number of clients, MLR’s 

accuracy averages 98.7% while PCA’s average accuracy is approximately 91.7%. 
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Figure 21 - Model accuracy with meter accuracy error: 2.5% 

As a result, it is possible to conclude that, in the presence of a high meter accuracy error, MLR 

outperforms PCA at inferring phase connectivity. 

5.3. Clock asynchronism 

5.3.1. Typical clock asynchronism 

Introducing the first of the clock errors, results are presented for smart meters with a slight clock 

asynchronism.In this simulation, variables were configured as follows: 

 Number of Clients: 50 and 100 

 Number of Readings: [0, 1500] 

 Number of runs per datapoint: 20 

 Clock asynchronism: [-45, +45] seconds 

Results are displayed in Figure 22 below. 
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Figure 22 - Model accuracy with max 45 seconds clock asynchronism 

It is clear from the results that MLR suffers little from the simulation of a typical clock asynchronism 

error. Alternatively, PCA starts to deteriorate its performance, only achieving 100% accuracy when the 

number of readings is more than 12 times the number of clients, given 100 customers. 

5.3.2. Critical clock asynchronism 

Each algorithms’ sensitivity to clock asynchronism error is now computed. From the results presented 

above it is expected that MLR is more robust that PCA to surges in asynchronism error. 

Simulations were run with the subsequent input variables, with results presented in Figure 23: 

 Number of Clients: 100 

 Number of Readings: 100, 300 and 500 

 Number of runs per data point: 20 

 Maximum absolute clock asynchronism: [0;120] seconds 
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Figure 23 - Model sensitivity to clock asynchronism error 

In fact, results are in accordance with the previous experiment. Moreover, the outcome is similar to the 

previous sensitivity analysis on meter accuracy error. MLR’s accuracy improves when the number of 

readings increases but PCA’s behavior keeps declining when error increases, although more erratically. 

Furthermore, bear in mind the results presented are the average of 20 runs and thus, if we plot a single 

run, results will even more intermittent for PCA. 

Taking as an example the last data point in the above simulation, MLR achieves 98% accuracy for 500 

readings, even for a maximum of 2 minutes of clock asynchronism, while PCA hovers around 85%. 

Finally, results are offered for what will be considered as the critical error of maximum clock 

asynchronism of 1 minute. Input variables are as follows: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Maximum clock asynchronism error: 60 seconds 
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Figure 24 - Model accuracy with critical clock asynchronism error 

Evidence demonstrates that MLR algorithm’s accuracy improves with the number of given 

measurements, achieving approximately 100% accuracy for a ratio of 5 times the number of readings 

per number of clients. On the other hand, clock asynchronism error deteriorates PCA’s performance, 

averaging only 90% accuracy. 

5.4. Clock skew 

5.4.1. Typical clock skew: 

The second of clock errors is now presented. Considering clock skew errors, Figure 25 illustrates the 

results of applying a typical error as defined by the succeeding variables: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Clock skew error: 5% 
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Figure 25 - Model accuracy with 5% clock skew error 

This result highlights that both models achieve 100% accuracy when the number of readings surpasses 

the number of clients, even including 5% clock skew error. These findings support the notion that MLR 

and PCA phase identification models are not influenced by clock skew errors, at least when modelled 

as described in paragraph 4.3.3. 

5.4.2. Critical clock skew 

To confirm the previous proposition, each algorithms’ sensitivity to increasing clock skew errors is now 

plotted, using the following inputs: 

 Number of Clients: 100 

 Number of Readings: 100, 300 and 500 

 Number of runs per data point: 20 

 Clock skew error: [0%;50%] 
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Figure 26 - Model sensitivity to clock skew 

The results revealed in Figure 26 tie well with the aforementioned proposition. This appears to be a case 

of the error having no impact on the correlation between household readings and total load measured 

at substations because it is constant over time for each smart meter. Consequently, there is no need to 

define a critical error for clock skew. 

5.5. Copper losses 

5.5.1. Typical copper losses 

The following step in the methodology is adding technical copper losses to substation totals to infer the 

influence of this factor in each models accuracy. Results are shown in Figure 27 for the given inputs: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Copper losses interval: [2%,10%] 
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Figure 27 - Model accuracy with typical copper losses 

Following the addition of copper losses, MLR algorithm shows improving results with increasing number 

of readings, reaching nearly 100% accuracy as the ratio approaches 5. Then again, PCA’s performance 

shows a significant negative impact, averaging around 90% accuracy. 

5.5.2. Critical copper losses 

In order to determine a critical error interval for copper losses, Figure 28 plots each algorithms’ sensitivity 

to an increase in both minimum and maximum copper losses with the additional input variables 

 Number of Clients: 100 

 Number of Readings: 100, 300 and 500 

 Number of runs per data point: 20 

 Minimum copper losses: [0%;10%] 

 Maximum copper losses: [10%, 50%] 
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Figure 28 - Model sensitivity to copper losses 

Once again, while adding noise to PCA dramatically affects its performance, MLR shows only a minor 

loss of under 5% in algorithm accuracy when the number of readings per number of clients increases to 

more than 3. 

In order to find the critical value for copper losses, let it be considered the minimum copper losses value 

that makes PCA achieve 90% accuracy when there are 3 times more readings than clients. The critical 

copper losses interval is thus from 3% to 15%. 

Figure 29 below presents the results with the following input: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Copper losses interval: [3%,15%] 

These results are consistent with the previous experiment with a typical error, showing a decrease in 

average accuracy for PCA algorithm while MLR’s performance remains roughly the same. 
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Figure 29 - Model accuracy with critical copper losses 

5.6. Missing Clients 

5.6.1. Typical missing clients 

The final section on isolated errors presents the results for testing the data with missing clients. 

Algorithms’ accuracy was computed with the following configuration: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Number of missing clients: 5 
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Figure 30 - Model accuracy with 5 missing clients 

As previously discussed, removing information on clients that only contribute to substation totals and 

are not fed to the algorithms as smart meter readings has a significant impact on both algorithms 

performance. However, as has been the case, MLR recovers to nearly 100% accuracy when the number 

of readings increases to 500 whereas PCA suffers from nearly a destructive effect, hovering around 

66% accuracy. 

5.6.2. Critical missing clients 

Figure 31 illustrates each model’s sensitivity to an increasing number of missing clients, including the 

following inputs: 

 Number of Clients: 100 

 Number of Readings: 100, 300 and 500 

 Number of runs per data point: 20 

 Number of missing clients: [0, 20] 

It is possible to observe that for each customer that has been scraped from the input data algorithm 

accuracy shows a visible drop. Nevertheless, keeping consistent with results, MLR is much less volatile, 

even though it drops for the first time below 90% accuracy. 
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Figure 31 - Model sensitivity to variable number of missing clients 

Let it be considered that 10 missing clients is the critical value for this type of error since it represents 

an inflection point in the curves plotted above, where the drop in model accuracy decelerates. 

The following Figure 32 shows the performance of both algorithms accuracy when dealing with 10 

missing clients’ data. Simulations were run using the below-mentioned parameters: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Number of missing clients: 10 

Once again, successive increases in missing data have a much harsher influence on PCA’s 

performance when compared to MLR. In fact, given 50 clients, 10 missing clients corresponds to 20% 

of all clients’ information being omitted and PCA’s accuracy averages around 50%. Although 20% 

energy theft is exceedingly high, some 3rd word or developing countries are faced with a similar reality 

[37]. 
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Figure 32 - Model accuracy for 10 missing clients 

5.7. All errors simultaneously 

5.7.1. All errors with typical values 

Finally, in order to test the robustness of each algorithm under laboratorial conditions simulating real 

world conditions as closely as possible, both algorithms were tested under all types of error 

simultaneously. 

The next figure illustrates total load per phase, given 3 different plots: 1) Client’s total per phase without 

any errors in red, 2) Total errors included in the simulation in green and 3) the substation phase totals 

fed to the algorithms in blue, corresponding to the sum of client readings plus errors. It is possible to 

observe from Figure 33 that total errors are clearly visible even when only typical values, close to reality, 

are applied. The errors included in the simulation were the following: 

 Number of clients: 100 

 Meter class accuracy: 99.5% 

 Clock asynchronism error: 45 seconds 

 Clock skew error: 5% 

 Copper losses: [2%, 10%] 

 Missing clients: 5  
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Figure 33 - Total load per phase with all typical errors 

The ensuing Figure 34 plots each model’s accuracy when all typical errors are included. Testing was 

done with the subsequent input variables: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 All typical errors included as per Figure 33 

Excitingly, considering the cumulative effect of all noises included, MLR’s performance at inferring phase 

connectivity shows stellar results. With laboratorial conditions as close as possible to real world data, 

and maybe some scenarios even more demanding, MLR shows promising results, achieving 98% 

accuracy with just 5 times the number of readings per number of clients’ ratio. 

On the other hand, PCA’s accuracy hovers close to 60%, and thus, with this simple execution, appears 

limited for real world implementation. 

Interestingly, an inflection in MLR’s accuracy when the number of readings nears the number of clients 

has become evident. Although this effect has been noted in most simulations before, in this example its 

influence is unavoidable. A possible explanation for this behaviour may be that as the number of 

variables nears the number of available equations, the model is increasingly restricted and thus cannot 

compute the optimal solution. Another possible explanation for this is the application of pseudo-inverse 

with zero tolerance to compute the algorithm. Nonetheless, if this algorithm is to be implemented in a 

real world scenario, further research should be done to investigate the root cause for this inconsistency 

and possibly deliver a solution. 
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Figure 34 - Model accuracy with all typical errors 

5.7.2. All errors with critical values  

As a challenge to further assess the robustness of both algorithms, in particular to test the limits of 

MLR’s performance, a simulation with all errors with critical error was performed.  

 

Figure 35 - Model accuracy with all critical errors 
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Figure 35 above has been computed with the following characterization: 

 Number of Clients: 50 and 100 

 Number of Readings: [0; 500] 

 Number of runs per data point: 20 

 Number of missing clients: 10 

 Meter class accuracy: 97.5% 

 Clock asynchronism error: 60 seconds 

 Clock skew error: 5% 

 Copper losses: [3%, 15%] 

 Missing clients: 10  

Extraordinarily, MLR still manages to output over 90% accuracy which further increases the confidence 

in this algorithm for inferring customer phase connectivity in the presence of multiple technical and 

commercial errors. 
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6. Conclusion 

In this dissertation, a new method which applies Multivariate Linear Regression for estimating the 

customers’ phase connectivity was presented, analyzed and its performance compared with a state-of-

the-art alternative methods that use Principal Component Analysis techniques. Utilizing real-world data 

provided by EDP Distribuição for smart meters for a specific location and computing per-phase 

aggregated phase totals under laboratorial conditions, both algorithms’ implementations discarded the 

need for introducing relaxations or for preprocessing the raw data. 

For experimentations without introducing noise, both algorithms always achieve 100% accuracy when 

the number of readings is greater than or equal to the number of smart meters. However, since in the 

real-world losses and errors are unavoidable, Monte-Carlo simulations were run with substation data 

built to replicate typical grid losses, random noise, energy theft, clock skew and clock synchronization 

errors. 

When simulating near-world conditions, Multivariate Linear Regression model successively presented 

a better performance, consistently achieving 100% accuracy when testing the different types of errors 

both independently and simultaneously. On the other hand, Principal Component Analysis suffered 

particularly from energy theft and copper losses, lowering its accuracy to close to 60% when all errors 

were considered simultaneously. 

In order to further assess the robustness of MLR, a simulation with very high error values was performed 

and, extraordinarily, it still manages to output over 90% accuracy which further increases the confidence 

in this algorithm for inferring customer phase connectivity in the presence of different kinds of noises. 

In addition to delivering better results, MLR’s implementation simplicity is a significant advantage in the 

business context. Moreover, given the fact that the phase identification algorithms presented have a low 

time complexity, with each simulation in the order of tens of milliseconds, it means a transfer to practice 

can be attained. 

For future works, it would be important to characterize the real business implementation scenario, in 

order to identify the average number of readings and the average number of clients that are available 

and, with that information, assess the expected model accuracy. Ideally, given real world secondary 

substation readings and its connected customers smart meter data, MLR’s performance may be 

assessed without the need to develop error scenarios. 

Additionally, it would be relevant to test and compare both models, in similar conditions as tested in this 

dissertation, but after preprocessing the raw data. If the expected increase of accuracy is significant 

enough, an increase of implementation complexity in real business applications could be justified. 

Finally, in order to perfect MLR algorithm’s efficiency, further research should be led to investigate the 

drop in accuracy when the number of readings to number of client’s ratio is unitary.  
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